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Initial population

• Normally sample 𝜎𝐼 , ҧ𝜈𝑆, and 𝜎𝑆 using uncertainties around the mean 

N times

– 𝜎𝐼 is the induced fission multiplicity distribution width 

– ҧ𝜈𝑆 is the spontaneous fission mean

– 𝜎𝑆 is the spontaneous fission width

• 𝑷 =

𝜎𝐼1, ҧ𝜈𝑆1, 𝜎𝑆1
𝜎𝐼2, ҧ𝜈𝑆2, 𝜎𝑆2

…
𝜎𝐼𝑁, ҧ𝜈𝑆𝑁, 𝜎𝑆𝑁

• Each row of P is a member in the population

– There are N members total in the population 



Fitness (outer loop)

• Ideal is fitness=0

• 𝑭𝑭 = σ
𝑪−𝑬

𝑬 𝒎𝟏

+ σ
𝑪−𝑬

𝑬 𝒎𝟐

, summed over all configurations of all 

experiments

• Each member of the population has a value of FF (fitness function) 

assigned to it

• Convergence criteria is that min(FF), which is associated with the 

most fit member of the population, stops changing more than a 

certain amount (i.e., 1%)

– This means that the fittest member of the population is not getting much 

more fit from generation to generation 



Calculate fitness

• Input original (C-E)/E values and original nuclear 

data values

• Also input sensitivities such as: 
𝒅

𝑪−𝑬

𝑬 𝒎𝟏

𝒅𝝊𝑺

– These sensitivities are each specific to a single 

configuration of a single experiment 



Selection (1st part of inner loop)

• N times, pick 2 parents and have them reproduce

– This creates the next generation of N members

– There is no limit to how many times a single member can be a parent

• Pick random # between min(FF) and max(FF)

– I.e., the # can be anywhere from the FF value of the most fit member of 

the population to the FF value of the least fit member of the population

• 1st 2 members that have FF<=random # are the parents

– After randomizing population vector of course

• This makes it so that more fit members of the population are more 

likely to be chosen, but even members with the worst fitness still 

have a chance to reproduce



Reproduction (2nd part of inner loop)

• Crossover with mutation probability

• Reproduce by averaging the 𝜎𝐼 , ҧ𝜈𝑆, and 𝜎𝑆
values of each of the parent pairs chosen in the 

selection step

• Each time an average is taken, there is a 10% 

chance that a random value is picked instead of 

the average 

– Random value (“mutated” value) is generated the 

same way the initial population was generated 



Solution

• The optimized solution is the member of the 

population that has the minimum (best) value of 

FF at the time of convergence of the minimum 

value of FF



Algorithm testing and validation

• Using all configurations of BeRP-Ni, BeRP-W, 

and SCRaP benchmarks

• Original nuclear data: 

– IF width = 1.140

– SF nubar = 2.151

– SF width = 1.151

• Optimized nuclear data:

– IF width = 1.1441

– SF nubar = 2.1347

– SF width = 1.1408



Algorithm testing and validation

• Using factorial moments of the Feynman 

histogram as very basic observables with which 

to optimize the nuclear data

– Population size (N) of 1000

– Mutation rate of 10%

– Convergence criteria of 0.00001% and a minimum of 

100 generations

• Original (C-E)/E values, vs. expected values 

calculated from sensitivities in algorithm, vs. 

actual values calculated from MCNP runs



m1 (C-E)/E

• Original:

– 1.0233

• Expected:

– 0.7585

• Actual:

– 0.6027



m2 (C-E)/E

• Original:

– 2.0762

• Expected:

– 1.5590

• Actual:

– 1.2608



Training and testing data sets

• The 32 configurations were split into 8 different 

sets of 16 training and 16 testing configurations



Original vs. optimized nuclear data

• Gives 25% expected improvement 

Nuclear data Original Optimized #1 # Std. dev. change 

ഥ𝜐𝑆 2.1510 2.1347 -3.2600 

𝜎𝑆 1.1510 1.1408 -0.0886 

𝜎𝐼 1.1400 1.1441 0.0360 

Nuclear data Original Optimized #2 # Std. dev. change 

ഥ𝜐𝑆 2.1510 2.1342 -3.3596 

𝜎𝑆 1.1510 1.1351 -0.1381 

𝜎𝐼 1.1400 1.1413 0.0113 



Constrained nuclear data

• Less improvement (9% and 17%, compared to 

previous 25%), but more reasonable changes in 

nuclear data 
Nuclear data Original Optimized (1 std. 

dev. constraint) 
# Std. dev. change 

ഥ𝜐𝑆 2.1510 2.1460 -1.0000 

𝜎𝑆 1.1510 1.1395 -1.0000 

𝜎𝐼 1.1400 1.1400 0.0000 

Nuclear data Original Optimized (2 std. dev. 
constraint) 

# Std. dev. change 

ഥ𝜐𝑆 2.1510 2.1410 -2.0000 

𝜎𝑆 1.1510 1.1370 -1.2183 

𝜎𝐼 1.1400 1.1450 0.4409 



Nuclear data optimized to different 

observables 
• 25-27% improvement in all cases 

Nuclear data Original Optimized for m1 # Std. dev. change

ഥ𝜐𝑆 2.151 2.1338 -3.4415

𝜎𝑆 1.151 1.1399 -0.9675

𝜎𝐼 1.14 1.1437 0.3222
Nuclear data Original Optimized for m2 # Std. dev. change

ഥ𝜐𝑆 2.151 2.1333 -3.5468

𝜎𝑆 1.151 1.1398 -0.9689

𝜎𝐼 1.14 1.1419 0.1638

Nuclear data Original
Optimized for m1 and 
m2 # Std. dev. change

ഥ𝜐𝑆 2.151 2.1347 -3.26

𝜎𝑆 1.151 1.1408 -0.0886

𝜎𝐼 1.14 1.1441 0.036



Conclusion

• The genetic algorithm is able to intelligently 

converge on a set of fission neutron multiplicity 

distribution parameters that yield improved 

simulated results 

– Applied to the BeRP-Ni, BeRP-W, and SCRaP

subcritical neutron multiplication inference 

benchmarks

• Does not affect critical benchmark simulations


